
blog.adam-bien.com

Real World Java EE Patterns
- Rethinking Best Practices

blog.adam-bien.com

Introduction

Expert Group Member (jcp.org) of Java EE 6, EJB 3.1, Time and Date and JPA 2.0

Java Champion,Netbeans Dream Team Member, (JavaONE) speaker, freelancer,
consultant and author: 7 German books + working on “Real World Java EE
Patterns– Rethinking Best Practices” http://press.adam-bien.com

Trainer, Developer and Architect (since JDK 1.0)

Project owner/committer: greenfire.dev.java.net, p4j5.dev.java.net,
fishfarm.dev.java.net

http://press.adam-bien.com
http://press.adam-bien.com
http://p4j5.dev.java.net
http://p4j5.dev.java.net

blog.adam-bien.com

Based on:

blog.adam-bien.com

1. EJBs Are Heavyweight

blog.adam-bien.com

EJBs Are Heavyweight

Configuration is mainly gone, because of conventions...
(there was no XML in my last projects except
persistence.xml)

EJB 3 are just annotated Java classes (if you love XML
you can even use just Deployment Descriptors instead of
annotation)

Container “services” like transactions, security,
concurrency or state are implemented with aspects (often
realized with dynamic proxies)

blog.adam-bien.com

EJBs Are Heavyweight

"POJOs" are just JavaBeans maintained by another
container, using similar techniques as EJB 3.1

EJB 3 containers are surprisingly small. Glassfish v3 EA
comes with two jars (688kB + 8kB = 796kB). The EJB 3
container is an OSGI bundle...

The whole EJB 3.1 API is about 47 kB.

blog.adam-bien.com

2. EJBs Are Not Portable

blog.adam-bien.com

EJBs Are Not Portable

J2EE 1.4 was underspecified :-) - EJB 3.X / JPA specs
cover more real world stuff (locking, optimistic
concurrency etc.).

Vendor specific deployment descriptor were painful for
migration - they are basically gone.

In most cases a EJB-JAR module is nothing but a JAR
without any XML descriptors (neither ejb-jar.xml nor
vendor specific)

Vendor specific annotations are not needed to develop a
Java EE application.

There is NOTHING vendor specific in an EAR. The
portability is really good.

blog.adam-bien.com

3. EJBs Are Not Extensible

blog.adam-bien.com

EJBs Are Not Extensible

How to inject a Guice component into an EJB 3:

blog.adam-bien.com

EJBs Are Not Extensible

The Guice (fluent) configuration:

blog.adam-bien.com

EJBs Are Not Extensible

You only need an interceptor:

blog.adam-bien.com

EJBs Are Not Extensible

Interceptors are able to access the Bean instance directly.

Having an instance available - you can manipulate it;
inject members use reflection to invoke methods, or set
fields...

It is very interesting for the integration of existing “legacy”
IoC frameworks :-)

blog.adam-bien.com

4. EJBs Are Slow

blog.adam-bien.com

EJBs Are Slow

The throughput of the EJB 3 solution was 2391
transactions/second. The slowest method call took 7
milliseconds. The average wasn't measurable. Please
keep in mind that in every request two session beans
were involved - so the overhead is doubled.

POJO: The throughput of the POJO solution was 2562
requests/second (request - there are no transactions
here). The slowest method call took 10 ms.

The difference is 171 requests / seconds, or 6.6%

blog.adam-bien.com

5. EJBs Are Too Complex

blog.adam-bien.com

EJBs Are Too Complex

Java EE is distributed and concurrent platform per
definition.

It mainly abstracts already existing products (messaging,
EIS, relational databases)

Distributed programming with shared state is always a
challenge.

In the Cloud Computing / SOA era non-functional
requirements like: monitoring (JMX), management, fail-
over or elasticity become more and more important.

Think about the ratio between the essential and
accidential complexity...

blog.adam-bien.com

6. EJBs Are Hard To Develop

blog.adam-bien.com

EJBs Are Hard To Develop

Simplest possible EJB 3.1:

@Stateless
public class SimpleSample{

 public void doSomething() { /*business logic*/ }

}

blog.adam-bien.com

EJBs Are Hard To Develop

How to compile:
You will need the the EJB 3.0 / 3.1 API in the classpath, or at least the

@Stateless annotation.

How to deploy:
Just JAR the class and put the JAR into e.g: [glassfishv3-prelude-

b23]\glassfish\domains\domain1\autodeploy

How to use:
import javax.ejb.EJB;

public class MyServlet extends HttpServlet{

@EJB

private SimpleSample sample;

}

blog.adam-bien.com

Agile Manifesto

blog.adam-bien.com

Agile Manifesto in Java EE Context

We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

[Pragmatic solutions over infinite layers indirections,
frameworks and patterns] (decorated by Adam Bien)

That is, while there is value in the items on the right, we
value the items on the left more.

blog.adam-bien.com

Entity Control Boundary

blog.adam-bien.com

Entity Control Boundary

The “lightweight” way to design applications:

Entity: persistent object (“domain objects” from
conceptual model)

Control: process knowledge - entity independent
logic, the glue between the boundary and the
entity

Boundary: the interface between the actor and
the use case

blog.adam-bien.com

SOA Architecture

blog.adam-bien.com

SOA Architecture

blog.adam-bien.com

Service Facade

blog.adam-bien.com

Service Facade (Context)

“In the J2EE era Session Facades were just wrappers of
Entity Beans or DAOs. They were motivated rather by the
shortcoming of the spec, than by design best practices.
The technical nature of the Session Façade was the
reason for their thin logic. Application Service was the use
case controller or façade, which coordinated multiple
Session Facades. The landscape, however, changed in
Java EE. “

blog.adam-bien.com

Service Facade

In Java EE an explicit remote and transactional boundary
is still needed. The exposure of fine grained business
logic over remote interfaces simply doesn’t work.

Network latency is too high for fine grained access and it
is hard to execute fine grained methods in a transaction
context over the network.

blog.adam-bien.com

Service Facade (Solution)

Service Façade is a Stateless, in exceptional cases
Stateful Session Bean with a local business interface.

A remote business interface should be only provided if it
is going to be used from outside the JVM and not injected
into Servlet, Backing Bean or other web component.

An Eclipse or Netbeans RCP (Rich Client Platform)
application would be one example for that.

blog.adam-bien.com

Service Facade

blog.adam-bien.com

Service Facade (Conventions)

Service Façade resides in a component which is realized
as Java-package with domain-specific name e.g.
ordermgmt.

The realization of the façade (business interface and the
bean implementation) resides in a sub-package with the
name facade e.g. ordermgmt.facade. This makes the
automatic verification of the architecture easier.

The business interface is named after business concepts,
without the obligatory local or remote suffix e.g.
OrderService and OrderServiceBean.

blog.adam-bien.com

Dual View Service Facade

blog.adam-bien.com

Service

blog.adam-bien.com

Service (Context)

The origin context of a Session Facade (SF) was defined
in the Core J2EE pattern as following:

“Enterprise beans encapsulate business logic and
business data and expose their interfaces, and thus the
complexity of the distributed services, to the client tier.”

- http://java.sun.com/blueprints/corej2eepatterns/Patterns/
SessionFacade.html

http://java.sun.com/blueprints/corej2eepatterns/Patterns/SessionFacade.html
http://java.sun.com/blueprints/corej2eepatterns/Patterns/SessionFacade.html
http://java.sun.com/blueprints/corej2eepatterns/Patterns/SessionFacade.html
http://java.sun.com/blueprints/corej2eepatterns/Patterns/SessionFacade.html

blog.adam-bien.com

Service (Context)

The context changed in Java EE quite a bit:

•A Service is a procedural activity.

•It realizes activities or sub processes.

•In an object oriented, domain driven context, a Service
realizes cross cutting, domain object independent logic.

•In a SOA a Service plays the main role and implements
the actual business logic.

blog.adam-bien.com

Service (Forces)

Services should be independent of each other.

The granularity of a Service is finer than of a Service Façade.

The Services are not accessible and even visible from
outside the business tier.

A Service should be not accessible from an external JVM. A
remote Service invocation doesn’t make sense and should be
avoided.

A Service is aimed to be reused from other component or
Service Façade.

The execution of a Service should be always consistent. Its
methods should either have no side effects (be idempotent),
or be able to be invoked in a transactional context.

blog.adam-bien.com

Service (Solution)

A Service is always local and comes with the
TransactionAttributeType.MANDATORY transaction
attribute:

@Stateless

@Local(DeliveryService.class)

@TransactionAttribute(TransactionAttributeType.MANDATORY)

public class DeliveryServiceBean implements DeliveryService {

}

blog.adam-bien.com

Service (Conventions)

A Service is a local, stateless session bean.

Service resides in a component which is realized as Java-
package with domain-specific name e.g. ordermgmt.

The realization of the service (business interface and the
bean implementation) resides in a sub-package with the
name “service” e.g. ordermgmt.service. This makes the
automatic verification of the architecture easier.

The business interface is named after business concepts,
without the obligatory local or remote suffix e.g.
OrderService and OrderServiceBean.

blog.adam-bien.com

Service (Conventions)

It is not required to use the term “Service” in the name of
the bean – its redundant. For identification purposes you
could use a @Service annotation.

The Service is always invoked in the context of an
existing transaction. It is deployed with the Mandatory
transaction attribute.

Seite

Domain Driven Design

blog.adam-bien.com

Domain Driven Design

Domain-driven design (DDD) is an approach to the
design of software, based on the two premises that
complex domain designs should be based on a model,
and that, for most software projects, the primary focus
should be on the domain and domain logic (as opposed
to being the particular technology used to implement the
system).

blog.adam-bien.com

Domain Driven Design

The idea:

The domain model should form a common language given by
domain experts for describing system requirements, that works
equally well for the business users or sponsors and for the software
developers.

blog.adam-bien.com

Domain Driven Architecture

blog.adam-bien.com

DD Architecture

blog.adam-bien.com

Persistent Domain Object

blog.adam-bien.com

Persistent Domain Object (Context)

The origin problem description in J2EE Core Patterns
was short and sound: “You have a conceptual domain
model with business logic and relationship.” http://
www.corej2eepatterns.com/Patterns2ndEd/
BusinessObject.htm

Even in the origin description of the Business Object
J2EE Pattern the realization of the conceptual model with
procedural approaches was considered as dangerous
regarding to bloating, code duplication spread over
different modules and therefore hard to maintain.

http://www.corej2eepatterns.com/Patterns2ndEd/BusinessObject.htm
http://www.corej2eepatterns.com/Patterns2ndEd/BusinessObject.htm
http://www.corej2eepatterns.com/Patterns2ndEd/BusinessObject.htm
http://www.corej2eepatterns.com/Patterns2ndEd/BusinessObject.htm
http://www.corej2eepatterns.com/Patterns2ndEd/BusinessObject.htm
http://www.corej2eepatterns.com/Patterns2ndEd/BusinessObject.htm

blog.adam-bien.com

Persistent Domain Object (Problem)

The vast majority of J2EE applications were build in the
procedural way.

The business logic was decomposed into tasks and
resources, which were mapped into Services and anemic,
persistent entities.

The procedural approach works surprisingly well until
type specific behavior for domain objects has to be
realized.

blog.adam-bien.com

Persistent Domain Object (Problem)

The attempt to realize object oriented algorithms with
procedural techniques ends up in many instanceof
checks and / or lengthy if-statements.

Such type checks are required, because the domain
objects are anemic in the procedural world, so that
inheritance doesn't really pays off.

Even in case inheritance was used for designing the
domain model, the most powerful feature – polymorphic
behavior –– and so in Services or Service Facades.

blog.adam-bien.com

Persistent Domain Object (Forces)

Your business logic is complex.

The validation rules are domain object related and
sophisticated.

The conceptual model can be derived from the requirements
and mapped to domain objects.

The domain objects have to be persisted in relational
database (it’s the common case).

The Use Cases, User Stories or other specification
documents already describe the target domain in object
oriented way. The relation between the behavior and the
data can be directly derived from the specification.

blog.adam-bien.com

Persistent Domain Object (Forces)

It is a green field project, or at least the existing database
was designed in way that allows the use of JPA. It means:
the tables and columns are reasonable named and the
database is not overly normalized.

blog.adam-bien.com

Persistent Domain Object - sample

blog.adam-bien.com

Persistent Domain Object - procedural type checks...

 int computeShippingCost(Load load){

 int shippingCosts = 0;

 int weight = 0;

 int defaultCost = 0;

 for (OrderItem orderItem : load.getOrderItems()) {

 LoadType loadType = orderItem.getLoadType();

 weight = orderItem.getWeight();

 defaultCost = weight * 5;

 switch (loadType) {

 case BULKY:

 shippingCosts += (defaultCost + 5);

 break;

 case LIGHTWEIGHT:

 shippingCosts += (defaultCost - 1);

 break;

 case STANDARD:

 shippingCosts += (defaultCost);

 break;

 default:

 throw new IllegalStateException("Unknown type: " + loadType);

 }

 }

 return shippingCosts;

 }

blog.adam-bien.com

Type checks - the object oriented way

 public int getShippingCosts() {

 int shippingCosts = 0;

 for (OrderItem orderItem : orderItems) {

 shippingCosts += orderItem.getShippingCost();

 }

 return shippingCosts;

 }

blog.adam-bien.com

Inheritance does the work

public class BulkyItem extends OrderItem{

 public BulkyItem(int weight) {

 super(weight);

 }

 @Override
 public int getShippingCost() {

 return super.getShippingCost() + 5;

 }

}

blog.adam-bien.com

The procedural construction

Load load = new Load();

OrderItem standard = new OrderItem();

standard.setLoadType(LoadType.STANDARD);

standard.setWeight(5);

load.getOrderItems().add(standard);

OrderItem light = new OrderItem();

light.setLoadType(LoadType.LIGHTWEIGHT);

light.setWeight(1);

load.getOrderItems().add(light);

OrderItem bulky = new OrderItem();

bulky.setLoadType(LoadType.BULKY);

bulky.setWeight(1);

load.getOrderItems().add(bulky);

blog.adam-bien.com

...and the fluent way

Load build = new Load.Builder().

 withStandardItem(5).

 withLightweightItem(1).

 withBulkyItem(1).

 build();

blog.adam-bien.com

Persistent Domain Object (Conventions)

PDOs are JPA entities with emphasis to domain logic and
not the technology.

PDO resides in a component which is realized as Java-
package with domain-specific name e.g. ordermgmt.

The PDO resides in a sub-package (layer) with the name
domainordermgmt.domain. This makes the automatic
verification of the architecture easier.

The name of the domain object is derived from the target
domain.

Getters and setters are not obligatory – they should be
only used in justified cases.

blog.adam-bien.com

Gateway

blog.adam-bien.com

Gateway (Context)

PDOs are already consistent, encapsulated objects with
hidden state. There is no need for further encapsulation –
they can be directly exposed to the presentation.

A Gateway provides an entry point to the root PDOs.

A Gateway could be even considered as an anti-Service
Façade – in fact its responsibilities are inverted.

blog.adam-bien.com

Gateway (Problem)

PDOs are passive artifacts.

It is not possible to access them directly without an
execution context.

The next problem is the stateless nature of most Java EE
applications...

After a method invocation of a transaction boundary (e.g.
a Stateless Session Bean) all JPA-entities (PDOs)
become detached. The client loses its state.

blog.adam-bien.com

Gateway (Problem)

This forces you to transport the whole context back and
forth between the client and the server, which leads to the
following problems:

Heavily interconnected PDOs become hard to merge.

Even for fine grained changes, the whole graph of objects has to be
transported back to server.

It is not always possible to merge the graph automatically and even
consistently.

blog.adam-bien.com

Gateway (Solution)

The solution is very simple. Just create a perfect “Anti
Service Façade”.

Instead of cleanly encapsulating the PDOs, just try to as
conveniently for the UI as possible expose PDOs to the
adjacent layer.

Allow the user to modify the PDOs directly without any
indirection.

The described approach above actually contradicts the
common J2EE principles, where encapsulation seemed
to be the only way to achieve maintainability. This is only
true for perfect abstractions and encapsulations, which
are very hard to find in real world projects.

blog.adam-bien.com

Gateway (Solution)

The inverse strategy works even better for some Use
Cases – just get rid of any layer which is probably leaky
anyway and expose the business logic directly to the
presentation tier.

Every change in the structure of the persistence layer
would be immediately visible in the UI – this makes the
implementation of feature requests really easy.

blog.adam-bien.com

Gateway (Solution)

Your presentation is coupled to the particular
implementation of the business logic, but the concrete
implementation is already encapsulated.

JPA abstracts from the particular provider, and EJBs are
nothing else than annotated POJOs.

The concrete state and implementation of domain specific
logic is well encapsulated too – it’s the main responsibility
of the PDOs.

blog.adam-bien.com

Gateway - the solution again...

The solution for the problem is the introduction of state on
the server side.

A stateful Gateway can keep the PDOs attached with an
EntityManager declared as
PersistenceContext.EXTENDED.

The EntityManager needs a transaction only as a
trigger to flush the changes to the database, which can be
started by a method which overrides the class default.

blog.adam-bien.com

Gateway - sample:

blog.adam-bien.com

Gateway (Conventions)

A Gateway resides in a component which is realized as
Java-package with domain-specific name e.g. ordermgmt.

The Gateway resides in a sub-package (layer) with the
name “facade” e.g. ordermgmt.facade. This makes the
automatic verification of the architecture easier. The
Gateway resides therefore in the same sub-package as a
Service Façade.

A Gateway is often named after the cached root entity – it
is not necessary to keep the name “Gateway”.

blog.adam-bien.com

Thank you!

blog.adam-bien.com

Interested in „highend“ trainings, coaching, consulting?
…just send me an email => abien@adam-bien.com

